
Rethinking Systems Thinking

Shayne Flint

Department of Computer Science

The Australian National University, Canberra, ACT 0200, Australia

shayne.flint@anu.edu.au

Abstract

Systems Thinking refers to a set of approaches that can be used to learn about and make decisions

regarding improvements to dynamically complex systems. They are distinguished from other ap-

proaches by their focus on the whole and the study of interactions among the parts of a system,

rather than the parts themselves. While a focus on interactions helps in understanding complex

systems and identifying appropriate improvements, it is necessary to use detailed knowledge of the

parts and other aspects of a system to implement any improvements. This paper addresses this issue

by introducing a novel Systems Thinking approach which uses detailed knowledge of the parts to

both understand the whole, and to build the systems required to implement necessary improvements.

Keywords

Systems thinking, aspect-oriented thinking, knowledge management, software-intensive systems,

systems engineering, model-driven engineering, model-driven development

INTRODUCTION

A great deal of human activity is dedicated to ‘solving problems’. However, problems usually

emerge within dynamically complex (Casti 1979) environments of co-evolving technology, people,

processes and other problems (Ackoff 1999). They are often affected by the progress of other prob-

lems and changes throughout the broader context. Because of this, individual problems are often

difficult to isolate and independently solve. Attempts to do so often lead to inappropriate develop-

ment, use and destruction of systems.

It is generally accepted that dynamically complex sets of interacting problems, or Problem Situa-

tions (Checkland 1981), are best dealt with by continuously improving the whole rather than by

attempting to solve individual problems (Ackoff 1999; Checkland 1981). In order to make appro-

priate improvements, it is first necessary to fully understand all aspects of a problem situation and

the likely impact of any proposed improvements.

Systems Thinking (Churchman 1968; Kramer 1977; Checkland 1981; Senge 1992) refers to a set

of approaches that can be used to learn about and make decisions regarding improvements within

dynamically complex systems such as Problem Situations. They are distinguished from other ap-

proaches by their focus on the whole and the study of interactions among the parts of a system,

rather than the parts themselves. It is by studying these interactions that emergent properties of

an entire system, including the likely impact of a change on the whole, can be understood.

While existing Systems Thinking approaches can help people understand Problem Situations and

identify appropriate improvements, they do not generally address the implementation of such im-

provements. To do this, it is necessary to build, operate and retire systems using deep and detailed

knowledge about a broad range of subject matters within a reductionist framework.

The purpose of this paper is to contribute to development of systems thinking approaches that

not only deal with understanding complex problem situations, but also the development of sys-

tems needed to implement necessary improvements. This is acheived by providing an overview

of Aspect-Oriented Thinking (AOT), a novel Systems Thinking approach to managing and using

multi-disciplinary reductionist knowledge to build and operate systems required to learn about

complex problem situations, identify appropriate improvements and to implement and evaluate

such improvements.

ASPECT-ORIENTED THINKING

Aspect-Oriented Thinking was developed within an engineering context to improve the effective-

ness of large complex technical systems. Systems of interest included engineering design, scientific

computing, and national security. The focus was on improving productivity and ensuring that sys-

tems were developed and operated with a full understanding of their impact over time and space.

This necessitated the development of a multi-disciplinary systems thinking approach to engineer-

ing.

As the development of AOT progressed, it became clear that the approach could form the basis of a

generalised systems thinking approach to improving a broad range of problem situations involving

the study, development and use of technical, social, cutural, legal, political, economic, natural and

other systems.

The remainder of this paper describes AOT in terms of the concepts involved and the process

used. A more detailed description can be found in Flint (2008). Earlier work, including a software

development case study, can be found in Flint (2006).

Conceptual Model

The four main concepts involved in AOT are depicted in Figure 1 and can be described as follows:

• Domains and Domain Models. In order to help people fully understand a Problem Situa-

tion, AOT applies the principle of separating concerns (Dijkstra 1982) in multiple dimensions.

The various subject matters (Domains) involved in a Problem Situation are considered sep-

arately. For example, within the context of emergency services, Domains such as policing,

fire-fighting and medical care, along with cross-cutting Domains such as transportation, com-

munications, and financing would be considered separately. Knowledge about each Domain is

captured in one or more autonomous Domain Models that each represents a particular view

of a given Domain within a Problem Situation.

Because they are autonomous, most Domain Models will be independently developed

and maintained by engineers, scientists, sociologists, psychologists, lawyers, philosophers,

economists and others, using languages and techniques with which they are familiar. They

will often be developed within a reductionist framework and will exist in various forms in-

cluding publications, software, data and other systems.

• Aspect-Oriented Specification Archetypes. Aspect-Oriented Specification Archetypes rep-

resent a key concept in AOT. They are used to model the archetypical ways in which domains

interact or can interact within a given type of Problem Situation. That is, they capture the

results of Systems Thinking.

For example, an Aspect-Oriented Specification Archetype dealing with aspects of ecologymight

describe the archetypical ways in which plants of a particular type respond to fire. These

descriptions take the form of a set of prototypes, patterns or templates for describing specific

interactions in Aspect-Oriented Specifications described below.

• Aspect-Oriented Specifications. Aspect-Oriented Specifications describe real, hypothetical

or abstract systems including those required to learn about and improve a Problem Situation.

They identify the domains involved (such as sub-systems, theories, models and laws), and the

ways in which they interact.

Aspect-Oriented Specifications are formed in accordance with Aspect-Oriented Specification

Archetypes. That is, Aspect-Oriented Specification Archetypes describe the archetypical ways

in which domains interact to form systems, while Aspect-Oriented Specifications describe spe-

cific systems in terms of those archetypes.

• Implementation processes. Implementation Processes interpret Aspect-Oriented Specifica-

tions and generate systems of various kinds including software, hardware, plans, procedures,

simulations, models and documentation. Because of the relationship between Specifications

and Specification Archetypes described above, it is possible to develop Implementation Pro-

cesses which can process any Specification that complies with a given Specification Archetype.

While Implementation Processes can be executed manually, automation can result in signifi-

cant productivity gains over conventional approaches to system development.

Systems required to learn about
and improve problem situations
including:

Models, simulations, processes,
source code, hardware designs,
configuration data, test artefacts

<<areFomedIn
AccordanceWith>>

<<reference>>

Domain Models
Systems

<<reference>>

Aspect−Oriented
Specification
Archetype

Aspect−Oriented
Specifications

Specification Archetypes describe the
archetypical ways in which domains can
and do interact. This information is used to
guide the development of specifications.

Implementation Processes interpret
Specifications in accordance with
an associated Specification Archetype
to generate systems.

Specifications describe real, hypothetical or
abstract systems including their informational,
functional, architectural and performance
characteristics.

including:
Aspects of the Problem Situation

Systems, Theories,
Observations, Laws,
Models, Services,
Simulations, Standards,
. . . .

Figure 1. Aspect-Oriented Thinking concepts.

Process Model

AOT is a continuous process of learning and improvement based on Boyd’s Observe-Orient-Decide-

Act (OODA) decision loop (Boyd 1986) as depicted in Figure 2. Within the context of improving

a Problem Situation, information is collected and recorded during the Observation phase. During

Orientation, this information is used to develop an understanding of a Problem Situation and to

identify necessary improvements. Options regarding the development, operation, modification and

retirement of systems required to implement these improvements are explored during the Decision

phase. Selected options are then implemented during the Act phase. The loop repeats (now includ-

ing the actual impact of earlier changes, as well as changes independantly made to other parts of

the problem situation) until all stakeholders agree that no further improvements are necessary.

Note that the OODA loop described here will be operating at many places and at many levels

within a single Problem Situation. Some processes will involve the use of AOT and some will not.

They will be operating at different rates, under different sets of constraints and will be changing

the Problem Situation in ways that impact the operation of other OODA loops.

Systems built to
support other phases.
(eg. models, simulations,
experiments, prototypes)

maintained and
retired to improve the

Systems built, operated,

problem situation

ACT ORIENT
What does it mean?

What improvements
are required?

Implement
improvements

DECIDE
How should the

improvements be implemented?

OBSERVE
What is happening in
the problem situation?

Autonomous and independently
evolving models, theories, concepts,
expertise, services and other
systems used to specify, build,
operate and maintain systems

Figure 2. The process of AOT is based on Boyd’s Observe-Orient-Decide-Act

(OODA) loop. It aims to understand complex problems situations, identify neces-

sary improvements and then implement them by building and operating systems

of various kinds.

Each phase of the AOT process is summarised below:

• Observation. During Observation, the various subject matters involved in a Problem Situ-

ation are identified as Domains. Autonomous Domain Models are then identified (reused) or

developed to represent a set of applicable views of each Domain.

Specifications and Specification Archetypes can also be formed during Observation to capture

and communicate common patterns of organisation, interaction, behaviour and other aspects

evident throughout a Problem Situation, and how these patterns manifest themselves in sys-

tems that already exist within the Problem Situation.

• Orientation. The aim of Orientation is to make sense of a Problem Situation and to identify

possible improvements. Understanding a Problem Situation is done without concern for the

construction of any particular system and will involve understanding each Domain as well as

the ways in which they are, and can be, woven together within a Problem Situation.

To understand each Domain, various traditional model analysis techniques can be used. For

example, simulations and executable modeling languages such System Dynamics (Forrester

1961) may be used to understand the dynamics of a particular subject matter.

In order to understand interactions between different Domains, Specification Archetypes and

corresponding Specifications developed during the Observation phase can be analysed stat-

ically and/or dynamically. Static analysis involves traditional activities such as ensuring

that the Specifications, Specification Archetypes and referenced Domain Models are properly

formed and that they reflect appropriate levels of agreement between all the stakeholders

involved. Dynamic analysis involves the use of simulations. If appropriate domain modeling

languages such as System Dynamics (Forrester 1961) or the Business Process Modeling Nota-

tion (BPMN) (Object Management Group 2006) are used, Specifications can be implemented

as simulations which can be used to explore the dynamics of systems involved in a Problem

Situation.

Once the Domains and Systems involved in a Problem Situation are fully understood, stake-

holders can work towards agreement regarding the identification of necessary improvements.

• Decision. During the Decision phase, options for implementing improvements are identified

and evaluated. Domain Models developed during Observation and Orientation can be reused

to form Specification Archetypes and Specifications for systems required to evaluate each op-

tion. Initially, these Specifications may relate to simulations and other analysis tools which

can be used to explore the likely impact of each option on the Problem Situation.

• Action. The purpose of the Action phase is to implement decisions made during the Decision

phase. This is achieved by extending Specifications for selected options to include architec-

ture, design, implementation, testing and deployment concerns. Appropriate Implementation

Processes are then developed (or reused) and executed to translate Specifications into opera-

tional systems and other artefacts.

Advantages and Limitations

Advantages of the AOT approach to Systems Thinking include:

• Implementing Improvements. While Systems Thinking approaches support the identifi-

cation of appropriate improvements within complex systems, they provide little support for

developing and operating the systems required to implement such improvements. AOT rep-

resents an integrated Systems Thinking approach which can be used to both identify and

implement improvements within complex systems.

• Multi-disciplinarity. The separation of Domain Models from system specification supports

multi-disciplinarity without the need for common languages, techniques and tools.

Domain Models can be developed in any appropriate language using any appropriate tech-

nique. AOT does not impose any constraints on the way knowledge is developed or repre-

sented. This allows each discipline to independently build their own bodies of knowledge,

languages, techniques and expertise within a reductionist framework (as they, in fact, do).

The concepts of Specification and Specification Archetype allow us to weave together this in-

dependently developing knowledge and expertise without weakening the depth of knowledge

involved or looking for some lowest common denominator. That is, AOT facilitates a multi-

disciplinary approach that protects the depth of knowledge developed by each discipline.

• Reuse. AOT supports extensive reuse. Domain Models, Specifications and Specification

Archetypeswill evolve over time and are extensively reused throughout the AOT process. Ini-

tially, Domain Models will be used to develop a static understanding of a Problem Situation.

These Domain Models will be reused to form Specifications and Specification Archetypes to

describe more complex aspects of a Problem Situation. These Specifications and Specification

Archetypes might then be reused and extended to deal with simulation. These simulations

would then be used to learn more about the dynamics of a Problem Situation and to identify

any necessary improvements. The same Specifications and Specification Archetypesmay then

be modified again to reflect various options for implementing these improvements. Finally,

they would be modified to form Specifications for operational systems which will be deployed

to improve a Problem Situation.

• Stakeholder Agreement. AOT is tolerant of stakeholder disagreement.

Within a universal context, or even within the context of a particular Problem Situation,

reaching consensus among people from a wide range of disciplines and perspectives regard-

ing the meaning, completeness, correctness and content of Domain Models, is very unlikely.

Fortunately, AOT does not require agreement within such broad contexts. Instead, the need

for agreement lies at the level of forming Specification Archetypes and corresponding Specifi-

cations. The context at this level is narrow and relates to a specific purpose. It involves fewer

stakeholders who only need to reach agreement regarding the meaning of domain knowledge

for that purpose.

• Controlled Agility. A key concept underpinning the OODA loop is that decision makers who

cycle through their OODA loop more rapidly than others, will have a competitive advantage.

Slower decision makers will make decisions based on observations and orientation that may

be invalid by the time such decisions are implemented. As a result, their actions are often

inappropriate and costly. More importantly, because the decisions of othersmay be more agile,

relentless and based on relevant and up-to-date observations and orientation, the world may

appear chaotic to slower decision makers.

The automation of Implementation Processes along with the AOT approach to capturing and

reusing knowledge in Domain Models, Specification Archetypes and Specifications, increases

the agility with which the AOT process (OODA loop) can be executed. This can, in turn, im-

prove the correctness of decisions, as well as the responsiveness of an organisation to external

change and disturbances.

Current limitations of the AOT approach and strategies to deal with them, include:

• Evaluation. AOT is a novel approach to Systems Thinking that has only been used on small

case studies. There is clearly a need to explore the effectiveness of AOT on a larger scale.

To do this, we have developed a strategy to run AOT projects within the context of larger

projects. One such project is under way within the environmental sciences domain.

• Tool Support. There is no effective tool support for AOT. A prototype tool has been developed

to support an earlier version of the approach, but it has proved cumbersome and difficult to

use, especially for non-technical users. More recently, some thought has gone into the devel-

opment of a new generation web-based tool, but actual development has not yet commenced.

CONCLUSION

Traditional Systems Thinking approaches can be used to understand complex Problem Situations

and to identify appropriate improvements. Such approaches do not, however, provide effective sup-

port for implementing such improvements. This paper has presented a overview of research under-

lay to develop Aspect-Oriented Thinking, a novel Systems Thinking methodology that incorporates

the use of detailed knowledge, developed within a reductionist framework, to build, operate, mod-

ify and retire the systems necessary to learn about and improve dynamically complex Problem

Situations.

It is hoped that this overview will contribute to an ongoing discussion about the development,

operation and retirement of systems within the context of Systems Thinking.

REFERENCES

Ackoff, R. L. (1999). Ackoff’s Best, His Classic Writings on Management. New York: John Wiley

& Sons.

Boyd, J. R. (1986). Patterns of conflict (unpublished). viewed 19 June 2008, <http://www.
d-n-i.net/boyd/pdf/poc.pdf>.

Casti, J. (1979). Connectivity, complexity, and catastrophe. Chichester, England: J. Wiley.

Checkland, P. (1981). Systems Thinking, Systems Practice. New York: J. Wiley.

Churchman, C. W. (1968). The Systems Approach. New York: Dell Publishing Inc.

Dijkstra, E. W. (1982). EWD 447: On the role of scientific thought. In Selected writings on Com-

puting: A Personal Perspective, pp. 60–66. Springer-Verlag.

Flint, S. R. (2006, July). Aspect-Oriented Thinking: An approach to bridging the dis-

ciplinary divides. Ph. D. thesis, Australian National University, Canberra, Australia.

Available from Australian Digital Thesis Program, http://thesis.anu.edu.au/public/adt-

ANU20080731.204756/index.html.

Flint, S. R. (2008, September). A Model-Driven Approach to Systems-of-Systems Engineering. In

Proceedings of the 2008 Systems Engineering Test and Evaluation conference (SETE 2008),

Canberra, Australia.

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA: The MIT Press.

Kramer, N. J. T. A. (1977). Systems thinking: concepts and notions. Leiden: Martinus Nijhoff.

Object Management Group (2006). Business Process Modeling Notation Specification, version

1.0. viewed 19 June 2008, <http://www.omg.org>.

Senge, P. M. (1992). The Fifth Discipline. Milsons Point NSW: Random House Australia.

COPYRIGHT
Shayne Flint c©2008. The author/s assign Edith Cowan University a non-exclusive license to use

this document for personal use provided that the article is used in full and this copyright statement

is reproduced. Such documents may be published on the World Wide Web, CD-ROM, in printed

form, and on mirror sites on the World Wide Web. The authors also grant a non-exclusive license to

ECU to publish this document in full in the Conference Proceedings. Any other usage is prohibited

without the express permission of the authors.

